首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   5篇
  国内免费   14篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   7篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   6篇
  2012年   8篇
  2011年   9篇
  2010年   1篇
  2009年   8篇
  2008年   7篇
  2007年   14篇
  2006年   8篇
  2005年   8篇
  2004年   8篇
  2003年   15篇
  2002年   6篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   7篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1976年   2篇
排序方式: 共有194条查询结果,搜索用时 352 毫秒
51.
The O-polysaccharide of the lipopolysaccharide (LPS) of Proteus vulgaris TG 155 was found to contain 2-acetamido-2,6-dideoxy-L-mannose (N-acetyl-L-rhamnosamine, L-RhaNAc), a monosaccharide that occurs rarely in Nature. The following structure of the O-polysaccharide was established by NMR spectroscopy, including 2D COSY, TOCSY, ROESY and 1H,13C HSQC experiments, along with chemical methods: [carbohydrate structure in text] Rabbit polyclonal O-antiserum against P. vulgaris TG 155 reacted with both core and O-polysaccharide moieties of the homologous LPS but showed no cross-reactivity with other LPS from the complete set of serologically different Proteus strains. Based on the unique O-polysaccharide structure and the serological data, we propose classifying P. vulgaris TG 155 into a new, separate Proteus O-serogroup, O55.  相似文献   
52.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus mirabilis TG 332 strain. The following structure of the O-polysaccharide was determined by chemical methods along with NMR spectroscopy, including 2D COSY, TOCSY, ROESY and 1H, 13C HMQC experiments: [see equation in text]. The O-polysaccharide studied has a unique structure among Proteus O-antigens. Accordingly, P. mirabilis TG 332 is serologically separate, and we propose to classify this strain into a new Proteus serogroup, O50. The nature of minor epitopes that provide a cross-reactivity of P. mirabilis TG 332 O-antiserum with the LPS of P. mirabilis O30 and Proteus penneri 34 (O60) is discussed.  相似文献   
53.
Heme catalases are homotetrameric enzymes with a highly conserved complex quaternary structure, and their functional role is still not well understood. Proteus mirabilis catalase (PMC), a heme enzyme belonging to the family of NADPH-binding catalases, was efficiently overexpressed in E. coli. The recombinant catalase (rec PMC) was deficient in heme with one-third heme and two-thirds protoporphyrin IX as determined by mass spectrometry and chemical methods. This ratio was influenced by the expression conditions, but the enzyme-specific activity calculated relative to the heme content remained unchanged. The crystal structure of rec PMC was solved to a resolution of 2.0 A, the highest resolution obtained to date with PMC. The overall structure was quite similar to that of wild-type PMC, and it is surprising that the absence of iron had no effect on the structure of the active site. Met 53 close to the essential His 54 was found less oxidized in rec PMC than in the wild-type enzyme. An acetate anion was modeled in an anionic pocket, away from the heme group but important for the enzymatic reaction. An alternate conformation observed for Arg 99 could play a role in the formation of the H-bond network connecting two symmetrical subunits of the tetramer.  相似文献   
54.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus vulgaris O15 and studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, ROESY, and H-detected 1H,(13)C HMQC experiments. The polysaccharide was found to contain an ether of GlcNAc with lactic acid, and the following structure of the repeating unit was established:-->3)-alpha-D-GlcpNAc4(R-Lac)6Ac-(1-->2)-beta-D-GlcpA-(1-->3)-alpha-L-6dTalp2Ac-(1-->3)-beta-D-GlcpNAc-(1-->where L-6dTal and D-GlcNAc4(R-Lac) are 6-deoxy-L-talose and 2-acetamido-4-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucose, respectively. The latter sugar, which to our knowledge has not been hitherto found in nature, was isolated from the polysaccharide by solvolysis with anhydrous triflic acid and identified by comparison with the authentic synthetic compound. Serological studies with the Smith-degraded polysaccharide showed an importance of 2-substituted GlcA for manifesting of the immunospecificity of P. vulgaris O15.  相似文献   
55.
56.
Abstract The glnAntrBC operon of Proteus vulgaris was cloned and heterologously expressed in Escherichia coli . The nucleotide sequence was determined. An open reading frame of 1407 bp was identified as the glnA gene and the deduced amino acid sequence showed 82% identity with the E. coli glutamine synthetase protein. Heterologous expression of the glnA gene in E. coli restored glutamine synthetase (GS) activity in a GS-negative mutant and a 52 kDa protein was detected and addressed as the GS subunit of P. vulgaris . Adjacent to the glnA gene the regulatory genes ntrB and ntrC were identified. Their coding regions comprised 1053 and 1452 bp, respectively, and the deduced gene products NRII (NtrB) and NRI (NtrC) shared 72% identity with the corresponding E. coli proteins. Heterologous expression in E. coli revealed only a 54 kDa protein which was shown to be NRI. NRII was not detectable using the methods employed.  相似文献   
57.
Examination of the midgut bacteria of two Danish populations of healthy fifth instar turnip moth larvae, Scotia (=Agrotis) segetum, living on potatoes and celery gave the following results. The total number of living microorganisms in the midgut varied between 1.0 × 104 and 4.0 × 105. Larvae from celery in N. W. Zeeland always contained Streptococcus faecalis and six members of Enterobacteriaceae, viz., Citrobacter freundii, Klebsiella pneumoniae, Hafnia alvei, Proteus mirabilis, P. vulgaris, and Erwinia amylovora. In larvae from potatoes in E. Jutland, the species consistently present were Streptococcus faecalis and four species of Enterobacteriaceae, viz., Escherichia coli, Erwinia amylovora, E. carotovora var. atroseptica, and one other, probably a member of the E. carotovora group. Streptococcus faecalis is supposed to occur as a mutualist in the alimentary tract, suppressing Gram-positive bacteria.  相似文献   
58.
Histological, histochemical, and ultrastructural features of the gut of the European endemic cave salamander Proteus anguinus were studied. The gut is a relatively undifferentiated muscular tube lined with a simple columnar epithelium containing numerous goblet cells. The mucosa and underlying lamina propria/submucosa are elevated into a number of high longitudinal folds projecting into the lumen. The enterocytes are covered apically with uniform microvilli. Irregularity in the arrangement of microvilli was observed. Occasionally, irregular protrusions of the cytoplasm appear between groups of microvilli. Pinocytotic activity occurs at the bases of the intermicrovillous space. Mitochondria are numerous in the apical cytoplasm and basally beneath the nuclei. The supranuclear cytoplasm contains most of the cell organelles. The lateral plasma membranes of adjacent cells interdigitate and are joined by junctional complexes. The periodic acid-Schiff (PAS) reaction, indicating neutral mucosubstances, is positive only in the apical brush border of enterocytes and in goblet cells. The goblet cells also stained with Alcian blue (AB), at pH 2.5, thus revealing the presence of carboxylated glycosaminoglycans. Compact aggregations of AB- and PAS-negative cells are situated directly below the epithelium. Mitotic figures are present in individual clusters of cells. The fine structure of cells in these clusters indicated that these cells could be responsible for renewal of intestinal epithelium. Numerous endocrine-like cells could also be seen. The closely packed smooth muscle cells and amorphous extracellular material with collagen fibrils constitute a net-like structure under the basal lamina that is very closely associated with the epithelium. There are numerous acidophilic granular cells between epithelial cells, in the lamina propria/submucosa, and between cells aggregations. They seem to be associated with nematode infections and possibly constitute a humoral defense mechanism.  相似文献   
59.
An O-polysaccharide was isolated by mild acid hydrolysis from the lipopolysaccharide of Proteus mirabilis O40 and studied by NMR spectroscopy, including 2D 1H, 1H COSY, TOCSY, ROESY, and 1H, 13C HMQC experiments, along with chemical methods. The polysaccharide was found to contain an ether of GlcNAc with lactic acid and glycerol phosphate in the main chain and to have the following structure: --> 3)-beta-D-GlcpNAc4(R-Lac)-(1 --> 3)-alpha-D-Galp-(1 --> 3)-D-Gro-1-P-(O --> 3)-beta-D-GlcpNAc-(1 --> where D-GlcpNAc4(R-Lac) stands for 2-acetamido-4-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucose. This structure is unique among the known structures of the Proteus O-polysaccharides, which is in agreement with the classification of the strain studied into a separate O-serogroup. A serological relatedness of P. mirabilis O40 with some other Proteus strains was revealed and discussed in view of the O-polysaccharide structures.  相似文献   
60.
A neutral O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus mirabilis OC (CCUG 10702) and studied by sugar and methylation analyses and (1)H and (13)C NMR spectroscopy. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established: [structure: see text]. Based on the unique structure of the O-polysaccharide and serological data, we propose classifying P. mirabilis OC (CCUG 10702) into a new separate Proteus serogroup O75. A weak cross-reaction of O-antiserum against P. mirabilis OC with the lipopolysaccharide of P. mirabilis O49 was accounted for by a similarity in the O-polysaccharide structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号